Technology for Ormen Lange Phase 3

FFU Seminar 2019-01-31

Jan-Olav Hallset
Technology Lead OLP3,
A/S Norske Shell

Copyright of Shell International
Technology for OLP3
January 2019
Jan-Olav Hallset, CV

1993 - 2014: Oceaneering, Hitec, Poseidon, Siemens

2017 - now: Norske Shell – Technology Qualification Lead Ormen Lange Phase 3
Ormen Lange Phase 3 is a project investigating concepts for increasing total production from the Ormen Lange gas field.

All concepts are based on an offshore compression facility installed along the two 30" pipelines from the Ormen Lange field to Nyhamna, either floating or subsea

This presentation will describe key concepts and technologies evaluated for the project.
What is Ormen Lange Phase 3?

- Ormen Lange is a Mature asset; 19 producing wells w/ declining production
- 120km subsea to beach development, ~1000m water depth, 2*30' flowlines w/ wet gas from 4 templates
- High performing asset, 98.8% reliability

- Ormen Lange Infield Compression (OLIC) stopped in 2014 due to high costs

- Ormen Lange Phase 3 started to
- Make most out of existing infrastructure
- Reduce/simplify scope
- Leverage technologies
- Learn from others

Norway

UK, 1200 km
Offshore Compression – Extend Technology in Use and Simplify

Åsgard Dry Gas System (40 km step-out)

Gullfaks Wet Gas System (15 km step-out)

Subsea Power Development (ABB and Siemens)

Unmanned Facilities (Walk to Work)

SPAR Hulls

USE

UNMANNED SPAR

WET TOLERANT GAS COMPRESSION

LONG STEP OUT POWER (120 km @ 1000 meters)
OLIC to OL Phase 3

Key Developments:
- **Cost** reduced by more than 60% since 2014
- **Volumes** increased due to subsurface and flow assurance
- **Cost effective solutions** and technologies, such as
 - Eliminate new infield flowline system, unmanned platform, wet gas compression, subsea VSD/onshore VSD,
- **Early Vendor Engagement** has shown significant value

![Cost Reduction Chart]

- **100**
- **70**
- **44**
- **40**
- **33**

Copyright of Shell International

Technology for OLP3

January 2019
Offshore Compression – Shortlisted Concepts

1. CTC SPAR (Floater)
2. Subsea Compression Station
3. Subsea Compression Station

POWER CABLE 120 km
VSD for Dummies:
- The VSD Controls Compressor Speed
- Gas Flow and Pressure Depend on Speed
Topside Compression

- Semi-submersible or Spar hull
- Unmanned
- Walk-to-Work & Heli-deck
- 2 x 25MW compression
- 4x24” Steel Catenary Risers
Subsea Compression

- Subsea Wet Gas Compression
- Subsea Dry Gas Compression
- Wet Tolerant Compressor

POWER SYSTEM:
- Power Buoy with Dry VSDs
- 4/6 x Subsea VSDs
- Onshore Dry VSDs
Subsea Compression Selected – Two Remaining Options

OFFSHORE CONCEPTS:

A. Subsea Compression Station

B. Subsea Compression Station

POWER CABLE 120 km

ONSHORE NYHAMNA

- Power Grid
- Onshore VSDs

UNMANNED 😊

WET TOLERANT GAS COMPRESSION

LONG STEP OUT POWER (120 km @ 1000 meters)

Technology for OLP3

Copyright of Shell International

January 2019
Subsea Compression - Preliminary Layout

- Liquid Tolerant Gas Compression
- Power & Controls from shore by 120km cable(s)
- Subsea or onshore Variable Speed Drives (VSD)
- Tie-in to 30” pipelines with PRS/remote welding system
- Modular system optimised for efficient intervention
- Unmanned (offshore) 😊
Subsea Compression – Going Forward

- The partnership will now further evaluate and then choose between the two remaining options for subsea compression.

- The choice of subsea concept is expected later in 2019, followed by investment decision in the Ormen Lange license with Shell (operator), Petoro, Equinor, ExxonMobil and INEOS.